garage Documentation
Release 0.0.1

garage contributors

May 30, 2019

Contents

1 User Guide 3
.1 Inmstallation e e e e e e 3
1.2 Running Experiments L e e 5
1.3 Implementing New Environments L oo 8
1.4 TImplementing New Algorithms (Basic) 10
1.5 TImplementing New Algorithms (Advanced) 16
1.6 Runningjobson EC2. e e e 18
2 Citing garage 23
3 Indices and tables 25

garage Documentation, Release 0.0.1

garage is a framework for developing and evaluating reinforcement learning algorithms.

garage is a work in progress, input is welcome. The available documentation is limited for now.

Contents 1

garage Documentation, Release 0.0.1

2 Contents

CHAPTER 1

User Guide

The garage user guide explains how to install garage, how to run experiments, and how to implement new MDPs and
new algorithms.

1.1 Installation

1.1.1 Express Install

The fastest way to set up dependencies for garage is via running the setup script.

Clone our repo (https://github.com/rlworkgroup/garage) and navigate to its directory.

A MuJoCo key is required for installation. You can get one here: https://www.roboti.us/license.html
Make sure you run these scripts from the root directory of the repo, not from the scripts directory.

¢ On Linux, run the following:

’./scripts/setup_linux.sh —--mijkey path-to-your-mjkey.txt —--modify-bashrc

* On macOS, run the following:

’./scripts/setup_macos.sh --mijkey path-to-your-mjkey.txt —--modify-bashrc

The script sets up a conda environment, which is similar to virtualenv. To start using it, run the following:

source activate garage

Optionally, if you would like to run experiments that depends on the MuJoCo environment, you can set it up by running
the following command:

’./scripts/setup_mujoco.sh

and follow the instructions. You need to have the zip file for Mujoco v1.50 and the license file ready.

https://github.com/rlworkgroup/garage
https://www.roboti.us/license.html

garage Documentation, Release 0.0.1

1.1.2 Manual Install
Anaconda

garage assumes that you are using Anaconda Python distribution. You can download it from

https://www.continuum.io/downloads<https://www.continuum.io/downloads. Make sure to download the installer for
Python 2.7.

System dependencies for pygame

A few environments in garage are implemented using Box2D, which uses pygame for visualization. It requires a few
system dependencies to be installed first.

On Linux, run the following:

sudo apt-get install swig
sudo apt-get build-dep python-pygame

On macOS, run the following:

brew install swig sdl sdl_image sdl_mixer sdl_ttf portmidi

System dependencies for scipy

This step is only needed under Linux:

’sudo apt-get install build-dep python-scipy

Install Python modules

conda env create —-f environment.yml

1.1.3 GPU Support

To enable GPU support, you need to run the express installation script with the argument ——gpu. This options installs
GPU-supported Tensorflow and modules needed by Theano.

Before you run garage, you need to specify the directory for the CUDA library in environment variable
LD_LIBRARY_PATH. You may need to replace the directory conforming to your CUDA version accordingly.

export LD_LIBRARY PATH=S$LD_ LIBRARY PATH:/usr/local/cuda-9.0/1ib64

You should now be able to use GPU in Tensorflow. For Theano, two additional steps are needed.

* Specify CUDA root in ~/ . theanorc (Create the file if it doesn’t exist)

[cuda]
root = /usr/local/cuda-9.0

* Enable GPU for theano by

4 Chapter 1. User Guide

http://deeplearning.net/software/theano/tutorial/using_gpu.html

garage Documentation, Release 0.0.1

’export THEANO_ _FLAGS=device=cuda, floatX=float32, force_device=True

1.2 Running Experiments

We use object oriented abstractions for different components required for an experiment. To run an experiment, simply
construct the corresponding objects for the environment, algorithm, etc. and call the appropriate train method on the
algorithm. A sample script is provided in examples/trpo_cartpole.py. The code is also pasted below for a
quick glance:

import gym

from garage.baselines import LinearFeatureBaseline
from garage.experiment import run_experiment

from garage.tf.algos import TRPO

from garage.tf.envs import TfEnv

from garage.tf.policies import CategoricalMLPPolicy

def run_task (x_):
"""Wwrap TRPO training task in the run_task function."""
env = TfEnv (env_name="CartPole-v1")

policy = CategoricalMLPPolicy (
name="policy", env_spec=env.spec, hidden_sizes=(32, 32))

baseline = LinearFeatureBaseline (env_spec=env.spec)

algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
batch_size=4000,
max_path_length=100,
n_itr=100,
discount=0.99,
max_kl_step=0.01,
plot=False)

algo.train()

run_experiment (
run_task,
n_parallel=1,
snapshot_mode="1last",
seed=1,
plot=False,

You should see some log messages like the following:

2019-01-31 23:05:34 | Setting seed to 1

2019-01-31 23:05:34 | tensorboard data will be logged into:/root/code/garage/data/
—local/experiment/experiment_2019_01_31_23_05_29_0001
/opt/conda/envs/garage/lib/python3.6/site-packages/gym/envs/registration.py:14:
—PkgResourcesDeprecationWarning: Parameters to load are deprecated. Call .resolve,

—and .require separately. (continues on next page)

1.2. Running Experiments 5

garage Documentation, Release 0.0.1

(continued from previous page)

result = entry_point.load(False)

2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Obtaining,
—samples...
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Obtaining,
—samples for iteration 0...
0% [####4#44444H4 444444444 #444] 100% | ETA: 00:00:00
Total time elapsed: 00:00:00
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Processing,
—samples...
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Logging,
—diagnostics...
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Optimizing,
—policy...
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Computing loss_,
—before
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Computing KL
—before
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Optimizing
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29 _0001] itr #0 | Start CG_
—optimization: #parameters: 1282, #inputs: 286, #subsample_inputs: 286
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | computing loss,,
—before
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | performing update
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | computing,
—gradient
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | gradient computed
2019-01-31 23:05:38 | [experiment_2019_01_31_23_05_29_0001] itr #0 | computing,
—descent direction
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | descent
—~direction computed
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | backtrack iters:
‘*)3
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | computing loss,,
—after
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | optimization_
—finished
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Computing KL,
—after
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Computing loss,,
—after
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Fitting baseline.
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Saving snapshot..
2019-01-31 23:05:39 | [experiment_2019_01_31_23_05_29_0001] itr #0 | Saved
2019-01-31 23:05:39 | =~
2019-01-31 23:05:39 | AverageDiscountedReturn 13.1255
2019-01-31 23:05:39 | AverageReturn 14.1224
2019-01-31 23:05:39 | Baseline/ExplainedVariance -1.5755e-08
2019-01-31 23:05:39 | Entropy 0.579951
2019-01-31 23:05:39 | EnvExecTime 0.0472133
2019-01-31 23:05:39 | Iteration 0
2019-01-31 23:05:39 | ItrTime 1.71296
2019-01-31 23:05:39 | MaxReturn 36
2019-01-31 23:05:39 | MinReturn 8
2019-01-31 23:05:39 | NumTrajs 286
2019-01-31 23:05:39 | Perplexity 1.78595

(continues on next page)
6 Chapter 1. User Guide

garage Documentation, Release 0.0.1

(continued from previous page)

2019-01-31 23:05:39 | PolicyExecTime 0.163933
2019-01-31 23:05:39 | ProcessExecTime 0.0250623
2019-01-31 23:05:39 | StdReturn 4.98905
2019-01-31 23:05:39 | Time 1.71285
2019-01-31 23:05:39 | policy/Entropy 0.0648728
2019-01-31 23:05:39 | policy/KL 0.00501609
2019-01-31 23:05:39 | policy/KLBefore 0
2019-01-31 23:05:39 | policy/LossAfter -0.00198542
2019-01-31 23:05:39 | policy/LossBefore -7.64309e-07
2019-01-31 23:05:39 | policy/dLoss 0.00198465

2019-01-31 23:05:39 | ——————————mmmmmmmm— e e

Note that the execution of the experiment (including the construction of relevant objects, like environment, policy,
algorithm, etc.) has been wrapped in a function call, which is then passed to the run_experiment method, which
serializes the fucntion call, and launches a script that actually runs the experiment.

The benefit for launching experiment this way is that we separate the configuration of experiment parameters and the
actual execution of the experiment. run_experiment supports multiple ways of running the experiment, either locally,
locally in a docker container, or remotely on ec2 (see the section on Running jobs on EC2). Multiple experiments with
different hyper-parameter settings can be quickly constructed and launched simultaneously on multiple ec2 machines
using this abstraction.

Additional arguments for run_experiment:

* exp_name: If this is set, the experiment data will be stored in the folder data/local/{exp_name]. By default, the
folder name is set to experiment_{timestamp).

e exp_prefix: If this is set, and if exp_name is not specified, the experiment folder name will be set to
{exp_prefix}_{timestamp).

1.2.1 Running Experiments with TensorFlow and GPU

To run experiments in the TensorFlow tree of garage with the GPU enabled, set the flags use_tf and use_gpu to True
when calling run_experiment, as shown in the code below:

run_experiment (
run_task,
Number of parallel workers for sampling
n_parallel=1,
Only keep the snapshot parameters for the last iteration
snapshot_mode="last",
Specifies the seed for the experiment. If this is not provided, a random seed
will be used
seed=1,
Always set to True when using TensorFlow
use_tf=True,
Set to True to use GPU with TensorFlow
use_gpu=True,
plot=True,

It’s also possible to run TensorFlow with only the CPU by setting use_gpu to False, which is the default behavior when
use_tf is enabled.

1.2. Running Experiments 7

garage Documentation, Release 0.0.1

1.3 Implementing New Environments

In this section, we will walk through an example of implementing a point robot environment using our framework.

Each environment should implement at least the following methods / properties defined in the file garage/envs/
base.py:

class Env (object) :
def step(self, action):
mrmwn
Run one timestep of the environment's dynamics. When end of episode

is reached, reset () should be called to reset the environment's internal,
—state.

action : an action provided by the environment

Outputs

(observation, reward, done, 1info)

observation : agent's observation of the current environment
reward [Float] : amount of reward due to the previous action
done : a boolean, indicating whether the episode has ended

info : a dictionary containing other diagnostic information from the previous,
—action

mnn

raise NotImplementedError

def reset (self):

mnn

Resets the state of the environment, returning an initial observation.
Outputs

observation : the initial observation of the space. (Initial reward 1is_

—assumed to be 0.)
mmn

raise NotImplementedError

@property
def action_space(self):

mnn

Returns a Space object

moon

raise NotImplementedError

@property

def observation_space (self) :
mmrn

Returns a Space object

mnn

raise NotImplementedError

We will implement a simple environment with 2D observations and 2D actions. The goal is to control a point robot in
2D to move it to the origin. We receive position of a point robot in the 2D plane (z,) € R2. The action is its velocity
(#,9) € R? constrained so that || < 0.1 and || < 0.1. We encourage the robot to move to the origin by defining its
reward as the negative distance to the origin: r(z,y) = —/22 + y2.

We start by creating a new file for the environment. We assume that it is placed under examples/point_env.py.
First, let’s declare a class inheriting from the base environment and add some imports:

8 Chapter 1. User Guide

garage Documentation, Release 0.0.1

from garage.envs.base import Env
from garage.envs.base import Step
from akro import Box

import numpy as np

class PointEnv (Env) :

#

For each environment, we will need to specify the set of valid observations and the set of valid actions. This is done
by implementing the following property methods:

class PointEnv (Env) :
#

@property
def observation_space(self) :
return Box (low=-np.inf, high=np.inf, shape=(2,))

@property
def action_space(self):
return Box (low=-0.1, high=0.1, shape=(2,))

The Box space means that the observations and actions are 2D vectors with continuous values. The observations can
have arbitrary values, while the actions should have magnitude at most 0.1.

Now onto the interesting part, where we actually implement the dynamics for the MDP. This is done through two
methods, reset and step. The reset method randomly initializes the state of the environment according to some
initial state distribution. To keep things simple, we will just sample the coordinates from a uniform distribution. The
method should also return the initial observation. In our case, it will be the same as its state.

class PointEnv (Env) :
#

def reset (self):
self._state = np.random.uniform(-1, 1, size=(2,))
observation = np.copy(self._state)
return observation

The step method takes an action and advances the state of the environment. It should return a Step object (which
is a wrapper around namedtuple), containing the observation for the next time step, the reward, a flag indicating
whether the episode is terminated after taking the step, and optional extra keyword arguments (whose values should
be vectors only) for diagnostic purposes. The procedure that interfaces with the environment is responsible for calling
reset after seeing that the episode is terminated.

class PointEnv (Env) :
#

def step(self, action):

self. _state = self._state + action
x, y = self._state
reward = — (x**2 + y*%2) xx 0.5

done = abs(x) < 0.01 and abs(y) < 0.01

(continues on next page)

1.3. Implementing New Environments 9

garage Documentation, Release 0.0.1

(continued from previous page)

next_observation = np.copy(self._state)
return Step (observation=next_observation, reward=reward, done=done)

Finally, we can implement some plotting to visualize what the MDP is doing. For simplicity, let’s just print the current
state of the MDP on the terminal:

class PointEnv (Env) :
#

def render (self):
print 'current state:', self._state

And we’re done! We can now simulate the environment using the following diagnostic script:

python scripts/sim_env.py garage.envs.point_env —-mode random

It simulates an episode of the environment with random actions, sampled from a uniform distribution within the defined
action bounds.

You could also train a neural network policy to solve the task, which is probably an overkill. To do so, create a new
script with the following content (we will use stub mode):

from garage.algos.trpo import TRPO

from garage.baselines.linear feature_baseline import LinearFeatureBaseline
from garage.envs.point_env import PointEnv

from garage.envs.normalized env import normalize

from garage.policies.gaussian_mlp_policy import GaussianMLPPolicy

env = normalize (PointEnv())
policy = GaussianMLPPolicy (
env_spec=env.spec,
)
baseline = LinearFeatureBaseline (env_spec=env.spec)
algo = TRPO(
env=env,
policy=policy,
baseline=baseline,
)

algo.train()

Assume that the file is examples/trpo_point .py. You can then run the script:

’python examples/trpo_point.py

1.4 Implementing New Algorithms (Basic)

In this section, we will walk through the implementation of the classical REINFORCE' algorithm, also known as
the “vanilla” policy gradient. We will start with an implementation that works with a fixed policy and environment.
The next section Implementing New Algorithms (Advanced) will improve upon this implementation, utilizing the
functionalities provided by the framework to make it more structured and command-line friendly.

! Williams, Ronald J. “Simple statistical gradient-following algorithms for connectionist reinforcement learning.” Machine learning 8.3-4
(1992): 229-256.

10 Chapter 1. User Guide

garage Documentation, Release 0.0.1

1.4.1 Preliminaries

First, let’s briefly review the algorithm along with some notations. We work with an MDP defined by the tuple
(S, A, P,r, po,v,T), where S is a set of states, A is a set of actions, P : S x A x § — [0,1] is the transition
probability, 7 : S x A — R is the reward function, po : S — [0, 1] is the initial state distribution, v € [0, 1] is
the discount factor, and 7' € N is the horizon. REINFORCE directly optimizes a parameterized stochastic policy
o : S X A — [0, 1] by performing gradient ascent on the expected return objective:

=K lz yhr(se, at)]

where the expectation is implicitly taken over all possible trajectories, following the sampling procedure sy ~ po,
az ~ mo(-|s¢), and ¢4 ~ P(-|s¢, a¢). By the likelihood ratio trick, the gradient of the objective with respect to 6 is
given by

Von(0

<ny (8¢, at) (Zve logﬂe(at|5t)>1

t=0

We can reduce the variance of this estimator by noting that for ¢ < ¢,
E [r(sy,ar)Vologmg(at|s:)] =0

Hence,

Von(0

ZVglogﬂg at|st) Z'y r(spr, ap]

t'=t

Often, we use the following estimator instead:

Von(0 lz Vo log m(ai|st) Z’y (s, at/)]

t'=t

where "yt/ is replaced by Wt/_t. When viewing the discount factor as a variance reduction factor for the undiscounted
objective, this alternative gradient estimator has less bias, at the expense of having a larger variance. We define
R; = ZtT,:t ~¥~tr(sy, ayr) as the empirical discounted return.

The above formula will be the central object of our implementation. The pseudocode for the whole algorithm is as
below:

* Initialize policy 7 with parameter 6.
e Foriteration k = 1,2, ...

— Sample N trajectories 71, ..., 7, under the current policy 0, where 7; = (si,al, R})Z . Note
that the last state is dropped since no action is taken after observing the last state.

— Compute the empirical policy gradient:

!
—

N —
— 1 o
V(;T](e) = ﬁ E Vo logﬁo(aﬂS;)R;
i=11

Il
=]

— Take a gradient step: 01 = 05 + am).

4. Implementing New Algorithms (Basic) 11

garage Documentation, Release 0.0.1

1.4.2 Setup

As a start, we will try to solve the cartpole balancing task using a neural network policy. We will later generalize our
algorithm to accept configuration parameters. But let’s keep things simple for now.

from _ future import print_function

from garage.envs.box2d.cartpole_env import CartpoleEnv

from garage.policies.gaussian_mlp_policy import GaussianMLPPolicy
from garage.envs.normalized env import normalize

import numpy as np

import theano

import theano.tensor as TT

from lasagne.updates import adam

normalize () makes sure that the actions for the environment lies

within the range [-1, 1] (only works for environments with continuous actions)
env = normalize (CartpoleEnv())

Initialize a neural network policy with a single hidden layer of 8 hidden units
policy = GaussianMLPPolicy (env.spec, hidden_sizes=(8,))

We will collect 100 trajectories per iteration

N = 100

Each trajectory will have at most 100 time steps
T = 100

#

Number of iterations

n_itr = 100

Set the discount factor for the problem
discount 0.99

Learning rate for the gradient update
learning_rate = 0.01

1.4.3 Collecting Samples

Now, let’s collect samples for the environment under our current policy within a single iteration.

paths = []

for _ in xrange (N):
observations = []
actions = []
rewards = []

observation = env.reset ()

for _ in xrange (T):

policy.get_action() returns a pair of values. The second one returns a,
—dictionary, whose values contains

sufficient statistics for the action distribution. It should at least,
—contain entries that would be

returned by calling policy.dist_info(), which is the non-symbolic analog of_
—policy.dist_info_sym().

Storing these statistics is useful, e.g., when forming importance sampling,_
—ratios. In our case it 1is

not needed.

action, _ = policy.get_action (observation)
Recall that the last entry of the tuple stores diagnostic information about,
th environment In our

(continues on next page)

12 Chapter 1. User Guide

garage Documentation, Release 0.0.1

(continued from previous page)

case 1t 1s not needed.
next_observation, reward, terminal, _ = env.step(action)
observations.append (observation)
actions.append (action)
rewards.append (reward)
observation = next_observation
if terminal:
Finish rollout if terminal state reached
break

We need to compute the empirical return for each time step along the
trajectory

returns = []
return_so_far = 0
for t in xrange(len(rewards) - 1, -1, -1):
return_so_far = rewards[t] + discount * return_so_far

returns.append(return_so_far)
The returns are stored backwards in time, so we need to revert it
returns = returns[::-1]

paths.append (dict (
observations=np.array (observations),
actions=np.array (actions),
rewards=np.array (rewards),
returns=np.array (returns)

))

Observe that according to the formula for the empirical policy gradient, we could concatenate all the collected data for
different trajectories together, which helps us vectorize the implementation further.

observations = np.concatenate([p["observations"] for p in paths])
actions = np.concatenate([p["actions"] for p in paths])
returns = np.concatenate ([p["returns"] for p in paths])

1.4.4 Constructing the Computation Graph

We will use Theano for our implementation, and we assume that the reader has some familiarity with it. If not, it
would be good to go through some tutorials first.

First, we construct symbolic variables for the input data:

Create a Theano variable for storing the observations
We could have simply written ‘observations_var = TT.matrix('observations') instead,
—for this example. However,
doing it in a slightly more abstract way allows us to delegate to the environment,,
—for handling the correct data
type for the variable. For instance, for an environment with discrete observations,
—we might want to use integer
types 1f the observations are represented as one-hot vectors.
observations_var = env.observation_space.new_tensor_variable (

'observations',

It should have 1 extra dimension since we want to represent a list of_
—observations

extra_dims=1

(continues on next page)

1.4. Implementing New Algorithms (Basic) 13

http://deeplearning.net/software/theano/
http://nbviewer.jupyter.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb

garage Documentation, Release 0.0.1

(continued from previous page)

actions_var = env.action_space.new_tensor_variable (
'actions',
extra_dims=1

)

returns_var = TT.vector ('returns')

Note that we can transform the policy gradient formula as

N T-1
7] 1 iiypi |
Von(0) = Vo NT ;=1 ;:0 log mg(ag|sy) Ry | = VoL(0)

where L(0) = = Zf;l 3:01 log g (ai|si)Ri is called the surrogate function. Hence, we can first construct the
computation graph for L(#), and then take its gradient to get the empirical policy gradient.

policy.dist_info_sym returns a dictionary, whose values are symbolic expressions,,
—for quantities related to the

distribution of the actions. For a Gaussian policy, it contains the mean and (log).,
—standard deviation.

dist_info_vars = policy.dist_info_sym(observations_var, actions_var)

policy.distribution returns a distribution object under garage.distributions. It
—contains many utilities for computing

distribution-related quantities, given the computed dist_info_vars. Below we use_
—dist.log_likelihood _sym to compute

the symbolic log-likelihood. For this example, the corresponding distribution is an,,
—instance of the class

garage.distributions.DiagonalGaussian

dist = policy.distribution

Note that we negate the objective, since most optimizers assume a
minimization problem
surr = — TT.mean(dist.log_likelihood_sym(actions_var, dist_info_vars) * returns_var)

Get the list of trainable parameters.
params = policy.get_params (trainable=True)
grads = theano.grad(surr, params)

1.4.5 Gradient Update and Diagnostics

We are almost done! Now, you can use your favorite stochastic optimization algorithm for performing the parameter
update. We choose ADAM? in our implementation:

f train = theano.function (
inputs=[observations_var, actions_var, returns_var],
outputs=None,
updates=adam(grads, params, learning_rate=learning_rate),
allow_input_downcast=True

)

f_train(observations, actions, returns)

Since this algorithm is on-policy, we can evaluate its performance by inspecting the collected samples:

2 Kingma, Diederik P., and Jimmy Ba Adam. “A method for stochastic optimization.” International Conference on Learning Representation.
2015

14 Chapter 1. User Guide

garage Documentation, Release 0.0.1

print ('Average Return:', np.mean([sum(path["rewards"]) for path in paths]))

The complete source code so far is available at examples/vpg_1.py.

1.4.6 Additional Tricks

Adding a Baseline

The variance of the policy gradient can be further reduced by adding a baseline. The refined formula is given by

N —

V@U Z Z Vg log me at|3t)(- b(s@))

=1 t=0
We can do this since E [V log g (af|si)b(s)] = 0

The baseline is typically implemented as an estimator of V™(s). In this case, Ri — b(s!) is an estimator of
A7 (st al). The framework implements a few options for the baseline. A good balance of computational ef-
ficiency and accuracy is achieved by a linear baseline using state features, available at garage/baselines/
linear_feature_baseline.py. To use it in our implementation, the relevant code looks like the following:

... 1nitialization code

from garage.baselines.linear feature_baseline import LinearFeatureBaseline
baseline = LinearFeatureBaseline (env.spec)

... 1nside the loop for each episode, after the samples are collected
path = dict(
observations=np.array (observations),

actions=np.array (actions),
rewards=np.array (rewards),

path_baseline = baseline.predict (path)

advantages = []

returns = []

return_so_far = 0

for t in xrange(len(rewards) - 1, -1, -1):
return_so_far = rewards[t] + discount * return_so_far
returns.append(return_so_far)
advantage = return_so_far - path_baseline[t]

advantages.append (advantage)
The advantages are stored backwards in time, so we need to revert it

advantages = np.array (advantages([::-11])
And we need to do the same thing for the list of returns
returns = np.array(returnsf[::-11])

Normalizing the returns

Currently, the learning rate we set for the algorithm is very susceptible to reward scaling. We can alleviate this
dependency by whitening the advantages before computing the gradients. In terms of code, this would be:

advantages = (advantages - np.mean (advantages)) / (np.std(advantages) + 1le-8)

Implementing New Algorithms (Basic) 15

garage Documentation, Release 0.0.1

Training the baseline

After each iteration, we use the newly collected trajectories to train our baseline:

baseline.fit (paths)

The reason that this is executed after computing the baselines along the given trajectories is that in the extreme case,
if we only have one trajectory starting from each state, and if the baseline could fit the data perfectly, then all the
advantages would be zero, giving us no gradient signals at all.

Now, we can train the policy much faster (we need to change the learning rate accordingly because of the rescaling).
The complete source code so far is available at examples/vpg_2.py

1.5 Implementing New Algorithms (Advanced)

In this section, we will walk through the implementation of vanilla policy gradient algorithm provided in the algo-
rithm, available at garage/algos/vpg.py. It utilizes many functionalities provided by the framework, which we
describe below.

1.5.1 The BatchPolopt Class
The VPG class inherits from BatchPolopt, which is an abstract class inherited by algorithms with a common
structure. The structure is as follows:

¢ Initialize policy 7 with parameter 6.

* Initialize the computational graph structure.

e Foriteration k = 1,2, ...

— Sample N trajectories 7y, ..., 7, under the current policy 6, where 7; = (s}, a}, R})]_;'. Note that the
last state is dropped since no action is taken after observing the last state.

— Update the policy based on the collected on-policy trajectories.
— Print diagnostic information and store intermediate results.

Note the parallel between the structure above and the pseudocode for VPG. The BatchPolopt class takes care of
collecting samples and common diagnostic information. It also provides an abstraction of the general procedure above,
so that algorithm implementations only need to fill the missing pieces. The core of the BatchPolopt class is the
train () method:

def train(self):
#
self.init_opt ()
for itr in xrange(self.start_itr, self.n_itr):

paths = self.obtain_samples (itr)

samples_data = self.process_samples (itr, paths)
self.optimize_policy(itr, samples_data)

params = self.get_itr_snapshot (itr, samples_data)
logger.save_itr_params (itr, params)

#

The methods obtain_samples and process_samples are implemented for you. The derived class needs
to provide implementation for init_opt, which initializes the computation graph, optimize_policy, which
updates the policy based on the collected data, and get_itr_snapshot, which returns a dictionary of objects to
be persisted per iteration.

16 Chapter 1. User Guide

garage Documentation, Release 0.0.1

The BatchPolopt class powers quite a few algorithms:
* Vanilla Policy Gradient: garage/algos/vpg.py
¢ Natural Policy Gradient: garage/algos/npg.py
* Reward-Weighted Regression: garage/algos/erwr.py
 Trust Region Policy Optimization: garage/algos/trpo.py
* Relative Entropy Policy Search: garage/algos/reps.py

To give an illustration, here’s how we might implement init_opt for VPG (the actual code in garage/algos/
vpg . py is longer due to the need to log extra diagnostic information as well as supporting recurrent policies):

from garage.misc.ext import extract, compile_function, new_tensor
#

def init_opt (self):

obs_var = self.env.observation_space.new_tensor_variable (
'obs',
extra_dims=1,

)

action_var = self.env.action_space.new_tensor_variable (
'action',
extra_dims=1,

)

advantage_var = TT.vector ('advantage')

dist = self.policy.distribution

old_dist_info_vars = {
k: TT.matrix('old 2%s' % k)
for k in dist.dist_info_keys
}

old_dist_info_vars_list = [old_dist_info_vars[k] for k in dist.dist_info_keys]

state_info_vars = {
k: ext.new_tensor (
kl
ndim=2 + 1is_recurrent,
dtype=theano.config.floatX
) for k in self.policy.state_info_keys

}

state_info_vars_list = [state_info_vars[k] for k in self.policy.state_info_keys]
dist_info_vars = self.policy.dist_info_sym(obs_var, state_info_vars)
logli = dist.log_likelihood_sym(action_var, dist_info_vars)

formulate as a minimization problem
The gradient of the surrogate objective is the policy gradient
surr_obj = - TT.mean(logli » advantage_var)

input_list = [obs_var, action_var, advantage_var] + state_info_vars_list

self.optimizer.update_opt (surr_obj, target=self.policy, inputs=input_list)

The code is very similar to what we implemented in the basic version. Note that we use an optimizer, which in this case
would be an instance of garage.optimizers.first_order_optimizer.FirstOrderOptimizer.

Here’s how we might implement optimize_policy:

1.5. Implementing New Algorithms (Advanced) 17

garage Documentation, Release 0.0.1

def optimize_policy(self, itr, policy, samples_data, opt_info):
inputs = ext.extract (
samples_data,
"observations", "actions", "advantages"
)
agent_infos = samples_data["agent_infos"]
state_info_list = [agent_infos[k] for k in self.policy.state_info_keys]
inputs += tuple(state_info_list)
self.optimizer.optimize (inputs)

1.5.2 Parallel Sampling

The garage.parallel_sampler module takes care of parallelizing the sampling process and aggregating the
collected trajectory data. It is used by the BatchPolopt class like below:

At the beginning of training, we need to register the environment and the policy
onto the parallel_sampler
parallel_sampler.populate_task(self.env, self.policy)

#

Within each iteration, we just need to update the policy parameters to
each worker
cur_params = self.policy.get_param_values ()

paths = parallel_sampler.request_samples (
policy_params=cur_params,
max_samples=self.batch_size,
max_path_length=self.max_path_length,

The returned paths is a list of dictionaries with keys rewards, observations, actions, env_infos, and
agent_infos. The latter two, env_infos and agent_infos are in turn dictionaries, whose values are numpy
arrays of the environment and agent (policy) information per time step stacked together. agent_infos will contain
at least information that would be returned by calling policy.dist_info (). For a gaussian distribution with
diagonal variance, this would be the means and the logarithm of the standard deviations.

After collecting the trajectories, the process_samples method in the BatchPolopt class computes the empir-
ical returns and advantages by using the baseline specified through command line arguments (we’ll talk about this
below). Then it trains the baseline using the collected data, and concatenates all rewards, observations, etc. together
to form a single huge tensor, just as we did for the basic algorithm implementation.

One different semantics from the basic implementation is that, rather than collecting a fixed number of trajectories
with potentially different number of steps per trajectory (if the environment implements a termination condition), we
specify a desired total number of samples (i.e. time steps) per iteration. The number of actual samples collected will
be around this number, although sometimes slightly larger, to make sure that all trajectories are run until either the
horizon or the termination condition is met.

1.6 Running jobs on EC2

garage comes with support for running jobs on EC2 cluster. Here are the steps to set it up:

1. Create an AWS account at https://aws.amazon.com/. You need to supply a valid credit card (or set up consoli-
dated billing to link your account to a shared payer account) before running experiments.

18 Chapter 1. User Guide

https://aws.amazon.com/

garage Documentation, Release 0.0.1

2. After signing up, go to the Security Credentials console, click on the “Access Keys” tab, and create a new access
key. If prompted with “You are accessing the security credentials page for your AWS account. The account
credentials provide unlimited access to your AWS resources,” click “Continue to Security Credentials”. Save
the downloaded root_key . csv file somewhere.

My Account

t of Things Billing & Cost Management Fi
VS loT g
nect Devices to the Cloud nt
Development Sign Out
imelLift
soy and Scale Session-based Multiplayer Games

Create a Group Tag Edi
Services
bile Hub Additional Resources

d, Test, and Monitor Mobile Apps

= ke

Fig. 1: Click on the Security Credentials tab.

3. Set up environment variables. On Linux / macOS, edit your ~/.bash_profile and add the following
environment variables:

export AWS_ACCESS_KEY=" (your access key)"
export AWS_ACCESS_SECRET=" (your access secret)"
export GARAGE_S3_BUCKET=" (think of a bucket name)"

For GARAGE_S3_BUCKET, come up with a name for the S3 bucket used to store your experiment data. See here for
rules for bucket naming. You don’t have to manually create the bucket as this will be handled by the script later. It
should be of sufficient length to be unique.

4. Install the AWS command line interface. Set it up using the credentials you just downloaded by running aws
configure. Alternatively, you can edit the file at ~/ . aws/credentials (create the folder / file if it does
not exist) and set its content to the following:

[default]
aws_access_key_id = (your access key)
aws_secret_access_key = (your access secret)

Note that there should not be quotes around the keys / secrets!

5. Open a new terminal to make sure that the environment variables configured are in effect. Also make sure you
are using the Py3 version of the environment (source activate garage). Then, run the setup script:

python scripts/setup_ec2_for_garage.py

6. If the script runs fine, you’ve fully set up garage for use on EC2! Try running examples/cluster_demo.
py to launch a single experiment on EC2. If it succeeds, you can then comment out the last line sys.exit ()

1.6. Running jobs on EC2 19

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://aws.amazon.com/cli/

garage Documentation, Release 0.0.1

You are accessing the security credentials page for your AWS account. The account cradentials
access to your AWS resources.

To help secure your account, follow an AWS best practice by creating and using AWS Identity &
Management (LAM) users with limited permissions.

| Continue to Security Credentials | Get Started with IAM Users

Don't show me this message again

Fig. 2: Click “Continue to Security Credentials” if prompted. Then, click the Acces Keys tab.

Create Access Key

Your access key (access key ID and secret access key) has
Download your key file now, which contains your new access
download the key file now, you will not be able to retrieve you
To help protect your security, store your secret access key securel
» Show Access Key

Fig. 3: Click “Create New Access Key”. Then download the key file.

20 Chapter 1. User Guide

garage Documentation, Release 0.0.1

to launch the whole set of 15 experiments, each on an individual machine running in parallel. You can sign in
to the EC2 panel to view spot instance requests status or running instances.

7. While the experiments are running (or when they are finished), use python scripts/sync_s3.py
first-exp to download stats collected by the experiments. You can then run python garage/viskit/
frontend.py data/s3/first-exp and navigate to http://localhost:5000 to view the results.

1.6. Running jobs on EC2 21

https://us-west-1.console.aws.amazon.com/ec2sp/v1/spot/home?region=us-west-1
https://us-west-1.console.aws.amazon.com/ec2/v2/home?region=us-west-1#Instances:sort=desc:instanceId
http://localhost:5000

garage Documentation, Release 0.0.1

22 Chapter 1. User Guide

CHAPTER 2

Citing garage

If you use garage for academic research, you are highly encouraged to cite the following paper:

* Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel. “Benchmarking Deep Reinforcement

Learning for Continuous Control. Proceedings of the 33rd International Conference on Machine Learning
(ICML), 2016.

23

http://arxiv.org/abs/1604.06778
http://arxiv.org/abs/1604.06778

garage Documentation, Release 0.0.1

24 Chapter 2. Citing garage

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

25

	User Guide
	Installation
	Running Experiments
	Implementing New Environments
	Implementing New Algorithms (Basic)
	Implementing New Algorithms (Advanced)
	Running jobs on EC2

	Citing garage
	Indices and tables

