Source code for garage.tf.regressors.categorical_mlp_regressor

"""A regressor based on MLP with Normalized Inputs."""
from dowel import tabular
import numpy as np
import tensorflow as tf

from garage.tf.distributions import Categorical
from garage.tf.misc import tensor_utils
from garage.tf.models import NormalizedInputMLPModel
from garage.tf.optimizers import ConjugateGradientOptimizer, LbfgsOptimizer
from garage.tf.regressors import StochasticRegressor


[docs]class CategoricalMLPRegressor(StochasticRegressor): """Fits data to a Categorical with parameters are the output of an MLP. A class for performing regression (or classification, really) by fitting a Categorical distribution to the outputs. Assumes that the output will always be a one hot vector Args: input_shape (tuple[int]): Input shape of the training data. Since an MLP model is used, implementation assumes flattened inputs. The input shape of each data point should thus be of shape (x, ). output_dim (int): Output dimension of the model. name (str): Model name, also the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for the network. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. hidden_nonlinearity (Callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a tanh activation. hidden_w_init (Callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. Default is Glorot uniform initializer. hidden_b_init (Callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. Default is zero initializer. output_nonlinearity (Callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a softmax activation. output_w_init (Callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. Default is Glorot uniform initializer. output_b_init (Callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. Default is zero initializer. optimizer (garage.tf.Optimizer): Optimizer for minimizing the negative log-likelihood. Defaults to LbsgsOptimizer optimizer_args (dict): Arguments for the optimizer. Default is None, which means no arguments. tr_optimizer (garage.tf.Optimizer): Optimizer for trust region approximation. Defaults to ConjugateGradientOptimizer. tr_optimizer_args (dict): Arguments for the trust region optimizer. Default is None, which means no arguments. use_trust_region (bool): Whether to use trust region constraint. max_kl_step (float): KL divergence constraint for each iteration. normalize_inputs (bool): Bool for normalizing inputs or not. layer_normalization (bool): Bool for using layer normalization or not. """ def __init__(self, input_shape, output_dim, name='CategoricalMLPRegressor', hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, hidden_w_init=tf.glorot_uniform_initializer(), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=tf.nn.softmax, output_w_init=tf.glorot_uniform_initializer(), output_b_init=tf.zeros_initializer(), optimizer=None, optimizer_args=None, tr_optimizer=None, tr_optimizer_args=None, use_trust_region=True, max_kl_step=0.01, normalize_inputs=True, layer_normalization=False): super().__init__(input_shape, output_dim, name) self._use_trust_region = use_trust_region self._max_kl_step = max_kl_step self._normalize_inputs = normalize_inputs with tf.compat.v1.variable_scope(self._name, reuse=False) as vs: self._variable_scope = vs if optimizer_args is None: optimizer_args = dict() if tr_optimizer_args is None: tr_optimizer_args = dict() if optimizer is None: optimizer = LbfgsOptimizer(**optimizer_args) else: optimizer = optimizer(**optimizer_args) if tr_optimizer is None: tr_optimizer = ConjugateGradientOptimizer(**tr_optimizer_args) else: tr_optimizer = tr_optimizer(**tr_optimizer_args) self._optimizer = optimizer self._tr_optimizer = tr_optimizer self._first_optimized = False self.model = NormalizedInputMLPModel( input_shape, output_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, output_nonlinearity=output_nonlinearity, output_w_init=output_w_init, output_b_init=output_b_init, layer_normalization=layer_normalization) self._initialize() def _initialize(self): input_var = tf.compat.v1.placeholder(tf.float32, shape=(None, ) + self._input_shape) with tf.compat.v1.variable_scope(self._variable_scope): self.model.build(input_var) ys_var = tf.compat.v1.placeholder(dtype=tf.float32, name='ys', shape=(None, self._output_dim)) old_prob_var = tf.compat.v1.placeholder(dtype=tf.float32, name='old_prob', shape=(None, self._output_dim)) y_hat = self.model.networks['default'].y_hat old_info_vars = dict(prob=old_prob_var) info_vars = dict(prob=y_hat) self._dist = Categorical(self._output_dim) mean_kl = tf.reduce_mean( self._dist.kl_sym(old_info_vars, info_vars)) loss = -tf.reduce_mean( self._dist.log_likelihood_sym(ys_var, info_vars)) predicted = tf.one_hot(tf.argmax(y_hat, axis=1), depth=self._output_dim) self._f_predict = tensor_utils.compile_function([input_var], predicted) self._f_prob = tensor_utils.compile_function([input_var], y_hat) self._optimizer.update_opt(loss=loss, target=self, inputs=[input_var, ys_var]) self._tr_optimizer.update_opt( loss=loss, target=self, inputs=[input_var, ys_var, old_prob_var], leq_constraint=(mean_kl, self._max_kl_step))
[docs] def fit(self, xs, ys): """Fit with input data xs and label ys. Args: xs (numpy.ndarray): Input data. ys (numpy.ndarray): Label of input data. """ if self._normalize_inputs: # recompute normalizing constants for inputs self.model.networks['default'].x_mean.load( np.mean(xs, axis=0, keepdims=True)) self.model.networks['default'].x_std.load( np.std(xs, axis=0, keepdims=True)) if self._use_trust_region: # To use trust region constraint and optimizer old_prob = self._f_prob(xs) inputs = [xs, ys, old_prob] optimizer = self._tr_optimizer else: inputs = [xs, ys] optimizer = self._optimizer loss_before = optimizer.loss(inputs) tabular.record('{}/LossBefore'.format(self._name), loss_before) optimizer.optimize(inputs) loss_after = optimizer.loss(inputs) tabular.record('{}/LossAfter'.format(self._name), loss_after) tabular.record('{}/dLoss'.format(self._name), loss_before - loss_after) self._first_optimized = True
[docs] def predict(self, xs): """Predict ys based on input xs. Args: xs (numpy.ndarray): Input data. Return: numpy.ndarray: The predicted ys (one hot vectors). """ return self._f_predict(xs)
[docs] def predict_log_likelihood(self, xs, ys): """Predict log-likelihood of output data conditioned on the input data. Args: xs (numpy.ndarray): Input data. ys (numpy.ndarray): Output labels in one hot representation. Return: numpy.ndarray: The predicted log likelihoods. """ prob = self._f_prob(xs) return self._dist.log_likelihood(ys, dict(prob=prob))
[docs] def dist_info_sym(self, x_var, name=None): """Build a symbolic graph of the distribution parameters. Args: x_var (tf.Tensor): Input tf.Tensor for the input data. name (str): Name of the new graph. Return: dict[tf.Tensor]: Output of the symbolic graph of the distribution parameters. """ with tf.compat.v1.variable_scope(self._variable_scope): prob, _, _ = self.model.build(x_var, name=name) return dict(prob=prob)
[docs] def log_likelihood_sym(self, x_var, y_var, name=None): """Build a symbolic graph of the log-likelihood. Args: x_var (tf.Tensor): Input tf.Tensor for the input data. y_var (tf.Tensor): Input tf.Tensor for the one hot label of data. name (str): Name of the new graph. Return: tf.Tensor: Output of the symbolic log-likelihood graph. """ with tf.compat.v1.variable_scope(self._variable_scope): prob, _, _ = self.model.build(x_var, name=name) return self._dist.log_likelihood_sym(y_var, dict(prob=prob))
[docs] def get_params_internal(self, **args): """Get the params, which are the trainable variables. Args: args: Ignored by the function. Will be removed in future release. Returns: List[tf.Variable]: A list of trainable variables in the current variable scope. """ del args return self._variable_scope.trainable_variables()
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_predict'] del new_dict['_f_prob'] del new_dict['_dist'] return new_dict def __setstate__(self, state): """Object.__setstate__. Args: state (dict): unpickled state. """ super().__setstate__(state) self._initialize()