Source code for garage.tf.policies.gaussian_mlp_task_embedding_policy

"""GaussianMLPTaskEmbeddingPolicy."""
# pylint: disable=wrong-import-order
import akro
import numpy as np
import tensorflow as tf

from garage.tf.models import GaussianMLPModel
from garage.tf.policies.task_embedding_policy import TaskEmbeddingPolicy


[docs]class GaussianMLPTaskEmbeddingPolicy(TaskEmbeddingPolicy): """GaussianMLPTaskEmbeddingPolicy. Args: env_spec (garage.envs.env_spec.EnvSpec): Environment specification. encoder (garage.tf.embeddings.StochasticEncoder): Embedding network. name (str): Model name, also the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for mean. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. output_nonlinearity (callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a linear activation. output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. learn_std (bool): Is std trainable. adaptive_std (bool): Is std a neural network. If False, it will be a parameter. std_share_network (bool): Boolean for whether mean and std share the same network. init_std (float): Initial value for std. std_hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for std. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. min_std (float): If not None, the std is at least the value of min_std, to avoid numerical issues. max_std (float): If not None, the std is at most the value of max_std, to avoid numerical issues. std_hidden_nonlinearity (callable): Nonlinearity for each hidden layer in the std network. It should return a tf.Tensor. Set it to None to maintain a linear activation. std_output_nonlinearity (callable): Nonlinearity for output layer in the std network. It should return a tf.Tensor. Set it to None to maintain a linear activation. std_parameterization (str): How the std should be parametrized. There are a few options: - exp: the logarithm of the std will be stored, and applied a exponential transformation - softplus: the std will be computed as log(1+exp(x)) layer_normalization (bool): Bool for using layer normalization or not. """ def __init__(self, env_spec, encoder, name='GaussianMLPTaskEmbeddingPolicy', hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, hidden_w_init=tf.initializers.glorot_uniform(), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=None, output_w_init=tf.initializers.glorot_uniform(), output_b_init=tf.zeros_initializer(), learn_std=True, adaptive_std=False, std_share_network=False, init_std=1.0, min_std=1e-6, max_std=None, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=tf.nn.tanh, std_output_nonlinearity=None, std_parameterization='exp', layer_normalization=False): assert isinstance(env_spec.action_space, akro.Box) super().__init__(name, env_spec, encoder) self._hidden_sizes = hidden_sizes self._hidden_nonlinearity = hidden_nonlinearity self._hidden_w_init = hidden_w_init self._hidden_b_init = hidden_b_init self._output_nonlinearity = output_nonlinearity self._output_w_init = output_w_init self._output_b_init = output_b_init self._learn_std = learn_std self._adaptive_std = adaptive_std self._std_share_network = std_share_network self._init_std = init_std self._min_std = min_std self._max_std = max_std self._std_hidden_sizes = std_hidden_sizes self._std_hidden_nonlinearity = std_hidden_nonlinearity self._std_output_nonlinearity = std_output_nonlinearity self._std_parameterization = std_parameterization self._layer_normalization = layer_normalization self.obs_dim = env_spec.observation_space.flat_dim self.action_dim = env_spec.action_space.flat_dim self._dist = None self.model = GaussianMLPModel( output_dim=self.action_dim, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, output_nonlinearity=output_nonlinearity, output_w_init=output_w_init, output_b_init=output_b_init, learn_std=learn_std, adaptive_std=adaptive_std, std_share_network=std_share_network, init_std=init_std, min_std=min_std, max_std=max_std, std_hidden_sizes=std_hidden_sizes, std_hidden_nonlinearity=std_hidden_nonlinearity, std_output_nonlinearity=std_output_nonlinearity, std_parameterization=std_parameterization, layer_normalization=layer_normalization, name='GaussianMLPModel') self._initialize() def _initialize(self): """Build policy to support sampling. After build, get_action_*() methods will be available. """ obs_input = tf.compat.v1.placeholder(tf.float32, shape=(None, None, self.obs_dim)) latent_input = tf.compat.v1.placeholder( tf.float32, shape=(None, None, self._encoder.output_dim)) # Encoder should be outside policy scope with tf.compat.v1.variable_scope(self._encoder.name): latent_var = self._encoder.distribution.sample() with tf.compat.v1.variable_scope(self.name) as vs: self._variable_scope = vs with tf.compat.v1.variable_scope('concat_obs_latent'): obs_latent_input = tf.concat([obs_input, latent_input], -1) self._dist, mean_var, log_std_var = self.model.build( obs_latent_input, # Must named 'default' to # compensate tf default worker name='default').outputs embed_state_input = tf.concat([obs_input, latent_var], -1) dist_given_task, mean_g_t, log_std_g_t = self.model.build( embed_state_input, name='given_task').outputs self._f_dist_obs_latent = tf.compat.v1.get_default_session( ).make_callable([self._dist.sample(), mean_var, log_std_var], feed_list=[obs_input, latent_input]) self._f_dist_obs_task = tf.compat.v1.get_default_session( ).make_callable([dist_given_task.sample(), mean_g_t, log_std_g_t], feed_list=[obs_input, self._encoder.input])
[docs] def build(self, obs_input, task_input, name=None): """Build policy. Args: obs_input (tf.Tensor): Observation input. task_input (tf.Tensor): One-hot task id input. name (str): Name of the model, which is also the name scope. Returns: namedtuple: Policy network. namedtuple: Encoder network. """ name = name or 'additional' # Encoder should be outside policy scope with tf.compat.v1.variable_scope(self._encoder.name): enc_net = self._encoder.build(task_input, name=name) latent_var = enc_net.dist.loc with tf.compat.v1.variable_scope(self.name) as vs: self._variable_scope = vs embed_state_input = tf.concat([obs_input, latent_var], -1) return self.model.build(embed_state_input, name=name), enc_net
@property def distribution(self): """Policy action distribution. Returns: tfp.Distribution.MultivariateNormalDiag: Policy distribution. """ return self._dist
[docs] def get_action(self, observation): """Get action sampled from the policy. Args: observation (np.ndarray): Augmented observation from the environment, with shape :math:`(O+N, )`. O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action. """ obs, task = self.split_augmented_observation(observation) return self.get_action_given_task(obs, task)
[docs] def get_actions(self, observations): """Get actions sampled from the policy. Args: observations (np.ndarray): Augmented observation from the environment, with shape :math:`(T, O+N)`. T is the number of environment steps, O is the dimension of observation, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps, Z is the dimension of action. """ obses, tasks = zip(*[ self.split_augmented_observation(aug_obs) for aug_obs in observations ]) return self.get_actions_given_tasks(np.array(obses), np.array(tasks))
[docs] def get_action_given_latent(self, observation, latent): """Sample an action given observation and latent. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of observation. latent (np.ndarray): Latent, with shape :math:`(Z, )`. Z is the dimension of the latent embedding. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action. """ flat_obs = self.observation_space.flatten(observation) flat_obs = np.expand_dims([flat_obs], 1) flat_latent = self.latent_space.flatten(latent) flat_latent = np.expand_dims([flat_latent], 1) sample, mean, log_std = self._f_dist_obs_latent(flat_obs, flat_latent) sample = self.action_space.unflatten(np.squeeze(sample, 1)[0]) mean = self.action_space.unflatten(np.squeeze(mean, 1)[0]) log_std = self.action_space.unflatten(np.squeeze(log_std, 1)[0]) return sample, dict(mean=mean, log_std=log_std)
[docs] def get_actions_given_latents(self, observations, latents): """Sample a batch of actions given observations and latents. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. latents (np.ndarray): Latents, with shape :math:`(T, Z)`. T is the number of environment steps, Z is the dimension of latent embedding. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, , with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. """ flat_obses = self.observation_space.flatten_n(observations) flat_obses = np.expand_dims(flat_obses, 1) flat_latents = self.latent_space.flatten_n(latents) flat_latents = np.expand_dims(flat_latents, 1) samples, means, log_stds = self._f_dist_obs_latent( flat_obses, flat_latents) samples = self.action_space.unflatten_n(np.squeeze(samples, 1)) means = self.action_space.unflatten_n(np.squeeze(means, 1)) log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1)) return samples, dict(mean=means, log_std=log_stds)
[docs] def get_action_given_task(self, observation, task_id): """Sample an action given observation and task id. Args: observation (np.ndarray): Observation from the environment, with shape :math:`(O, )`. O is the dimension of the observation. task_id (np.ndarray): One-hot task id, with shape :math:`(N, ). N is the number of tasks. Returns: np.ndarray: Action sampled from the policy, with shape :math:`(A, )`. A is the dimension of action. dict: Action distribution information, with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(A, )`. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(A, )`. A is the dimension of action. """ flat_obs = self.observation_space.flatten(observation) flat_obs = np.expand_dims([flat_obs], 1) task_id = np.expand_dims([task_id], 1) sample, mean, log_std = self._f_dist_obs_task(flat_obs, task_id) sample = self.action_space.unflatten(np.squeeze(sample, 1)[0]) mean = self.action_space.unflatten(np.squeeze(mean, 1)[0]) log_std = self.action_space.unflatten(np.squeeze(log_std, 1)[0]) return sample, dict(mean=mean, log_std=log_std)
[docs] def get_actions_given_tasks(self, observations, task_ids): """Sample a batch of actions given observations and task ids. Args: observations (np.ndarray): Observations from the environment, with shape :math:`(T, O)`. T is the number of environment steps, O is the dimension of observation. task_ids (np.ndarry): One-hot task ids, with shape :math:`(T, N)`. T is the number of environment steps, N is the number of tasks. Returns: np.ndarray: Actions sampled from the policy, with shape :math:`(T, A)`. T is the number of environment steps, A is the dimension of action. dict: Action distribution information, , with keys: - mean (numpy.ndarray): Mean of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. - log_std (numpy.ndarray): Log standard deviation of the distribution, with shape :math:`(T, A)`. T is the number of environment steps. A is the dimension of action. """ flat_obses = self.observation_space.flatten_n(observations) flat_obses = np.expand_dims(flat_obses, 1) task_ids = np.expand_dims(task_ids, 1) samples, means, log_stds = self._f_dist_obs_task(flat_obses, task_ids) samples = self.action_space.unflatten_n(np.squeeze(samples, 1)) means = self.action_space.unflatten_n(np.squeeze(means, 1)) log_stds = self.action_space.unflatten_n(np.squeeze(log_stds, 1)) return samples, dict(mean=means, log_std=log_stds)
[docs] def clone(self, name): """Return a clone of the policy. Args: name (str): Name of the newly created policy. It has to be different from source policy if cloned under the same computational graph. Returns: garage.tf.policies.GaussianMLPTaskEmbeddingPolicy: Cloned policy. """ new_policy = self.__class__( env_spec=self.env_spec, encoder=self.encoder.clone('{}_encoder'.format(name)), name=name, hidden_sizes=self._hidden_sizes, hidden_nonlinearity=self._hidden_nonlinearity, hidden_w_init=self._hidden_w_init, hidden_b_init=self._hidden_b_init, output_nonlinearity=self._output_nonlinearity, output_w_init=self._output_w_init, output_b_init=self._output_b_init, learn_std=self._learn_std, adaptive_std=self._adaptive_std, std_share_network=self._std_share_network, init_std=self._init_std, min_std=self._min_std, max_std=self._max_std, std_hidden_sizes=self._std_hidden_sizes, std_hidden_nonlinearity=self._std_hidden_nonlinearity, std_output_nonlinearity=self._std_output_nonlinearity, std_parameterization=self._std_parameterization, layer_normalization=self._layer_normalization) return new_policy
def __getstate__(self): """Object.__getstate__. Returns: dict: The state to be pickled for the instance. """ new_dict = super().__getstate__() del new_dict['_f_dist_obs_latent'] del new_dict['_f_dist_obs_task'] del new_dict['_dist'] return new_dict def __setstate__(self, state): """Object.__setstate__. Args: state (dict): Unpickled state. """ super().__setstate__(state) self._initialize()