Source code for garage.tf.algos.ddpg

"""Deep Deterministic Policy Gradient (DDPG) implementation in TensorFlow."""
from collections import deque

from dowel import logger, tabular
import numpy as np
import tensorflow as tf

from garage import _Default, make_optimizer
from garage import log_performance
from garage.np import obtain_evaluation_samples
from garage.np import samples_to_tensors
from garage.np.algos import RLAlgorithm
from garage.sampler import OffPolicyVectorizedSampler
from garage.tf.misc import tensor_utils


[docs]class DDPG(RLAlgorithm): """A DDPG model based on https://arxiv.org/pdf/1509.02971.pdf. DDPG, also known as Deep Deterministic Policy Gradient, uses actor-critic method to optimize the policy and reward prediction. It uses a supervised method to update the critic network and policy gradient to update the actor network. And there are exploration strategy, replay buffer and target networks involved to stabilize the training process. Example: $ python garage/examples/tf/ddpg_pendulum.py Args: env_spec (EnvSpec): Environment specification. policy (garage.tf.policies.Policy): Policy. qf (object): The q value network. replay_buffer (garage.replay_buffer.ReplayBuffer): Replay buffer. steps_per_epoch (int): Number of train_once calls per epoch. n_train_steps (int): Training steps. max_path_length (int): Maximum path length. The episode will terminate when length of trajectory reaches max_path_length. max_eval_path_length (int or None): Maximum length of paths used for off-policy evaluation. If None, defaults to `max_path_length`. buffer_batch_size (int): Batch size of replay buffer. min_buffer_size (int): The minimum buffer size for replay buffer. rollout_batch_size (int): Roll out batch size. exploration_policy (garage.np.exploration_policies.ExplorationPolicy): Exploration strategy. target_update_tau (float): Interpolation parameter for doing the soft target update. policy_lr (float): Learning rate for training policy network. qf_lr (float): Learning rate for training q value network. discount(float): Discount factor for the cumulative return. policy_weight_decay (float): L2 regularization factor for parameters of the policy network. Value of 0 means no regularization. qf_weight_decay (float): L2 regularization factor for parameters of the q value network. Value of 0 means no regularization. policy_optimizer (tf.Optimizer): Optimizer for training policy network. qf_optimizer (tf.Optimizer): Optimizer for training q function network. clip_pos_returns (bool): Whether or not clip positive returns. clip_return (float): Clip return to be in [-clip_return, clip_return]. max_action (float): Maximum action magnitude. reward_scale (float): Reward scale. smooth_return (bool): Whether to smooth the return. name (str): Name of the algorithm shown in computation graph. """ def __init__( self, env_spec, policy, qf, replay_buffer, *, # Everything after this is numbers. steps_per_epoch=20, n_train_steps=50, max_path_length=None, max_eval_path_length=None, buffer_batch_size=64, min_buffer_size=int(1e4), rollout_batch_size=1, exploration_policy=None, target_update_tau=0.01, discount=0.99, policy_weight_decay=0, qf_weight_decay=0, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer, policy_lr=_Default(1e-4), qf_lr=_Default(1e-3), clip_pos_returns=False, clip_return=np.inf, max_action=None, reward_scale=1., smooth_return=True, name='DDPG'): action_bound = env_spec.action_space.high self._max_action = action_bound if max_action is None else max_action self._tau = target_update_tau self._policy_weight_decay = policy_weight_decay self._qf_weight_decay = qf_weight_decay self._name = name self._clip_pos_returns = clip_pos_returns self._clip_return = clip_return self._success_history = deque(maxlen=100) self._episode_rewards = [] self._episode_policy_losses = [] self._episode_qf_losses = [] self._epoch_ys = [] self._epoch_qs = [] self._target_policy = policy.clone('target_policy') self._target_qf = qf.clone('target_qf') self._policy_optimizer = policy_optimizer self._qf_optimizer = qf_optimizer self._policy_lr = policy_lr self._qf_lr = qf_lr self._min_buffer_size = min_buffer_size self._qf = qf self._steps_per_epoch = steps_per_epoch self._n_train_steps = n_train_steps self._buffer_batch_size = buffer_batch_size self._discount = discount self._reward_scale = reward_scale self._smooth_return = smooth_return self.max_path_length = max_path_length self._max_eval_path_length = max_eval_path_length # used by OffPolicyVectorizedSampler self.rollout_batch_size = rollout_batch_size self.env_spec = env_spec self.replay_buffer = replay_buffer self.policy = policy self.exploration_policy = exploration_policy self.sampler_cls = OffPolicyVectorizedSampler self.init_opt() # pylint: disable=too-many-statements
[docs] def init_opt(self): """Build the loss function and init the optimizer.""" with tf.name_scope(self._name): # Create target policy and qf network with tf.name_scope('inputs'): obs_dim = self.env_spec.observation_space.flat_dim input_y = tf.compat.v1.placeholder(tf.float32, shape=(None, 1), name='input_y') obs = tf.compat.v1.placeholder(tf.float32, shape=(None, obs_dim), name='input_observation') actions = tf.compat.v1.placeholder( tf.float32, shape=(None, self.env_spec.action_space.flat_dim), name='input_action') policy_network_outputs = self._target_policy.get_action_sym( obs, name='policy') target_qf_outputs = self._target_qf.get_qval_sym(obs, actions, name='qf') self.target_policy_f_prob_online = tensor_utils.compile_function( inputs=[obs], outputs=policy_network_outputs) self.target_qf_f_prob_online = tensor_utils.compile_function( inputs=[obs, actions], outputs=target_qf_outputs) # Set up target init and update function with tf.name_scope('setup_target'): ops = tensor_utils.get_target_ops( self.policy.get_global_vars(), self._target_policy.get_global_vars(), self._tau) policy_init_ops, policy_update_ops = ops qf_init_ops, qf_update_ops = tensor_utils.get_target_ops( self._qf.get_global_vars(), self._target_qf.get_global_vars(), self._tau) target_init_op = policy_init_ops + qf_init_ops target_update_op = policy_update_ops + qf_update_ops f_init_target = tensor_utils.compile_function( inputs=[], outputs=target_init_op) f_update_target = tensor_utils.compile_function( inputs=[], outputs=target_update_op) with tf.name_scope('inputs'): obs_dim = self.env_spec.observation_space.flat_dim input_y = tf.compat.v1.placeholder(tf.float32, shape=(None, 1), name='input_y') obs = tf.compat.v1.placeholder(tf.float32, shape=(None, obs_dim), name='input_observation') actions = tf.compat.v1.placeholder( tf.float32, shape=(None, self.env_spec.action_space.flat_dim), name='input_action') # Set up policy training function next_action = self.policy.get_action_sym(obs, name='policy_action') next_qval = self._qf.get_qval_sym(obs, next_action, name='policy_action_qval') with tf.name_scope('action_loss'): action_loss = -tf.reduce_mean(next_qval) if self._policy_weight_decay > 0.: regularizer = tf.keras.regularizers.l2( self._policy_weight_decay) for var in self.policy.get_regularizable_vars(): policy_reg = regularizer(var) action_loss += policy_reg with tf.name_scope('minimize_action_loss'): policy_optimizer = make_optimizer( self._policy_optimizer, learning_rate=self._policy_lr, name='PolicyOptimizer') policy_train_op = policy_optimizer.minimize( action_loss, var_list=self.policy.get_trainable_vars()) f_train_policy = tensor_utils.compile_function( inputs=[obs], outputs=[policy_train_op, action_loss]) # Set up qf training function qval = self._qf.get_qval_sym(obs, actions, name='q_value') with tf.name_scope('qval_loss'): qval_loss = tf.reduce_mean( tf.compat.v1.squared_difference(input_y, qval)) if self._qf_weight_decay > 0.: regularizer = tf.keras.regularizers.l2( self._qf_weight_decay) for var in self._qf.get_regularizable_vars(): qf_reg = regularizer(var) qval_loss += qf_reg with tf.name_scope('minimize_qf_loss'): qf_optimizer = make_optimizer(self._qf_optimizer, learning_rate=self._qf_lr, name='QFunctionOptimizer') qf_train_op = qf_optimizer.minimize( qval_loss, var_list=self._qf.get_trainable_vars()) f_train_qf = tensor_utils.compile_function( inputs=[input_y, obs, actions], outputs=[qf_train_op, qval_loss, qval]) self.f_train_policy = f_train_policy self.f_train_qf = f_train_qf self.f_init_target = f_init_target self.f_update_target = f_update_target
def __getstate__(self): """Object.__getstate__. Returns: dict: the state to be pickled for the instance. """ data = self.__dict__.copy() del data['target_policy_f_prob_online'] del data['target_qf_f_prob_online'] del data['f_train_policy'] del data['f_train_qf'] del data['f_init_target'] del data['f_update_target'] return data def __setstate__(self, state): """Object.__setstate__. Args: state (dict): unpickled state. """ self.__dict__.update(state) self.init_opt()
[docs] def train(self, runner): """Obtain samplers and start actual training for each epoch. Args: runner (LocalRunner): LocalRunner is passed to give algorithm the access to runner.step_epochs(), which provides services such as snapshotting and sampler control. Returns: float: The average return in last epoch cycle. """ last_return = None runner.enable_logging = False for _ in runner.step_epochs(): for cycle in range(self._steps_per_epoch): runner.step_path = runner.obtain_samples(runner.step_itr) for path in runner.step_path: path['rewards'] *= self._reward_scale last_return = self.train_once(runner.step_itr, runner.step_path) if (cycle == 0 and self.replay_buffer.n_transitions_stored >= self._min_buffer_size): runner.enable_logging = True log_performance(runner.step_itr, obtain_evaluation_samples( self.policy, runner.get_env_copy()), discount=self._discount) runner.step_itr += 1 return last_return
[docs] def train_once(self, itr, paths): """Perform one step of policy optimization given one batch of samples. Args: itr (int): Iteration number. paths (list[dict]): A list of collected paths. Returns: np.float64: Average return. """ paths = samples_to_tensors(paths) epoch = itr / self._steps_per_epoch self._episode_rewards.extend([ path for path, complete in zip(paths['undiscounted_returns'], paths['complete']) if complete ]) self._success_history.extend([ path for path, complete in zip(paths['success_history'], paths['complete']) if complete ]) # Avoid calculating the mean of an empty list in cases where # all paths were non-terminal. last_average_return = np.NaN avg_success_rate = 0 if self._episode_rewards: last_average_return = np.mean(self._episode_rewards) if self._success_history: if (itr % self._steps_per_epoch == 0 and self.replay_buffer.n_transitions_stored >= self._min_buffer_size): avg_success_rate = np.mean(self._success_history) self.policy.log_diagnostics(paths) self._qf.log_diagnostics(paths) for _ in range(self._n_train_steps): if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): qf_loss, y_s, qval, policy_loss = self.optimize_policy() self._episode_policy_losses.append(policy_loss) self._episode_qf_losses.append(qf_loss) self._epoch_ys.append(y_s) self._epoch_qs.append(qval) if itr % self._steps_per_epoch == 0: logger.log('Training finished') if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): tabular.record('Epoch', epoch) tabular.record('Policy/AveragePolicyLoss', np.mean(self._episode_policy_losses)) tabular.record('QFunction/AverageQFunctionLoss', np.mean(self._episode_qf_losses)) tabular.record('QFunction/AverageQ', np.mean(self._epoch_qs)) tabular.record('QFunction/MaxQ', np.max(self._epoch_qs)) tabular.record('QFunction/AverageAbsQ', np.mean(np.abs(self._epoch_qs))) tabular.record('QFunction/AverageY', np.mean(self._epoch_ys)) tabular.record('QFunction/MaxY', np.max(self._epoch_ys)) tabular.record('QFunction/AverageAbsY', np.mean(np.abs(self._epoch_ys))) tabular.record('AverageSuccessRate', avg_success_rate) if not self._smooth_return: self._episode_rewards = [] self._episode_policy_losses = [] self._episode_qf_losses = [] self._epoch_ys = [] self._epoch_qs = [] self._success_history.clear() return last_average_return
[docs] def optimize_policy(self): """Perform algorithm optimizing. Returns: float: Loss of action predicted by the policy network float: Loss of q value predicted by the q network. float: ys. float: Q value predicted by the q network. """ transitions = self.replay_buffer.sample_transitions( self._buffer_batch_size) observations = transitions['observations'] next_observations = transitions['next_observations'] rewards = transitions['rewards'].reshape(-1, 1) actions = transitions['actions'] terminals = transitions['terminals'].reshape(-1, 1) next_inputs = next_observations inputs = observations target_actions = self.target_policy_f_prob_online(next_inputs) target_qvals = self.target_qf_f_prob_online(next_inputs, target_actions) clip_range = (-self._clip_return, 0. if self._clip_pos_returns else self._clip_return) ys = np.clip( rewards + (1.0 - terminals) * self._discount * target_qvals, clip_range[0], clip_range[1]) _, qval_loss, qval = self.f_train_qf(ys, inputs, actions) _, action_loss = self.f_train_policy(inputs) self.f_update_target() return qval_loss, ys, qval, action_loss