Source code for garage.tf.algos.td3

"""This module implements a TD3 model.

TD3, or Twin Delayed Deep Deterministic Policy Gradient, uses actor-critic
method to optimize the policy and reward prediction. Notably, it uses the
minimum value of two critics instead of one to limit overestimation.
"""
from collections import deque

from dowel import logger, tabular
import numpy as np
import tensorflow as tf

from garage import _Default, make_optimizer
from garage import log_performance
from garage.np import obtain_evaluation_samples
from garage.np import samples_to_tensors
from garage.np.algos import RLAlgorithm
from garage.sampler import OffPolicyVectorizedSampler
from garage.tf.misc import tensor_utils


[docs]class TD3(RLAlgorithm): """Implementation of TD3. Based on https://arxiv.org/pdf/1802.09477.pdf. Example: $ python garage/examples/tf/td3_pendulum.py Args: env_spec (garage.envs.EnvSpec): Environment. policy (garage.tf.policies.Policy): Policy. qf (garage.tf.q_functions.QFunction): Q-function. qf2 (garage.tf.q_functions.QFunction): Q function to use replay_buffer (garage.replay_buffer.ReplayBuffer): Replay buffer. target_update_tau (float): Interpolation parameter for doing the soft target update. policy_lr (float): Learning rate for training policy network. qf_lr (float): Learning rate for training q value network. policy_weight_decay (float): L2 weight decay factor for parameters of the policy network. qf_weight_decay (float): L2 weight decay factor for parameters of the q value network. policy_optimizer (tf.python.training.optimizer.Optimizer): Optimizer for training policy network. qf_optimizer (tf.python.training.optimizer.Optimizer): Optimizer for training q function network. clip_pos_returns (boolean): Whether or not clip positive returns. clip_return (float): Clip return to be in [-clip_return, clip_return]. discount (float): Discount factor for the cumulative return. max_action (float): Maximum action magnitude. name (str): Name of the algorithm shown in computation graph. steps_per_epoch (int): Number of batches of samples in each epoch. max_path_length (int): Maximum length of a path. max_eval_path_length (int or None): Maximum length of paths used for off-policy evaluation. If None, defaults to `max_path_length`. n_train_steps (int): Number of optimizations in each epoch cycle. buffer_batch_size (int): Size of replay buffer. min_buffer_size (int): Number of samples in replay buffer before first optimization. rollout_batch_size (int): Roll out batch size. reward_scale (float): Scale to reward. exploration_policy_sigma (float): Action noise sigma. exploration_policy_clip (float): Action noise clip. actor_update_period (int): Action update period. smooth_return (bool): If True, do statistics on all samples collection. Otherwise do statistics on one batch. exploration_policy (garage.np.exploration_policies.ExplorationPolicy): Exploration strategy. """ def __init__( self, env_spec, policy, qf, qf2, replay_buffer, *, # Everything after this is numbers. target_update_tau=0.01, policy_weight_decay=0, qf_weight_decay=0, policy_optimizer=tf.compat.v1.train.AdamOptimizer, qf_optimizer=tf.compat.v1.train.AdamOptimizer, policy_lr=_Default(1e-4), qf_lr=_Default(1e-3), clip_pos_returns=False, clip_return=np.inf, discount=0.99, max_action=None, name='TD3', steps_per_epoch=20, max_path_length=None, max_eval_path_length=None, n_train_steps=50, buffer_batch_size=64, min_buffer_size=1e4, rollout_batch_size=1, reward_scale=1., exploration_policy_sigma=0.2, actor_update_period=2, exploration_policy_clip=0.5, smooth_return=True, exploration_policy=None): action_bound = env_spec.action_space.high self._max_action = action_bound if max_action is None else max_action self._tau = target_update_tau self._policy_weight_decay = policy_weight_decay self._qf_weight_decay = qf_weight_decay self._name = name self._clip_pos_returns = clip_pos_returns self._clip_return = clip_return self._success_history = deque(maxlen=100) self._episode_rewards = [] self._episode_policy_losses = [] self._episode_qf_losses = [] self._epoch_ys = [] self._epoch_qs = [] self._target_policy = policy.clone('target_policy') self._target_qf = qf.clone('target_qf') self.qf2 = qf2 self.qf = qf self._exploration_policy_sigma = exploration_policy_sigma self._exploration_policy_clip = exploration_policy_clip self._actor_update_period = actor_update_period self._action_loss = None self._target_qf2 = qf2.clone('target_qf2') self._policy_optimizer = policy_optimizer self._qf_optimizer = qf_optimizer self._policy_lr = policy_lr self._qf_lr = qf_lr self._policy = policy self._n_train_steps = n_train_steps self._min_buffer_size = min_buffer_size self._qf = qf self._steps_per_epoch = steps_per_epoch self._n_train_steps = n_train_steps self._buffer_batch_size = buffer_batch_size self._discount = discount self._reward_scale = reward_scale self._smooth_return = smooth_return self.max_path_length = max_path_length self._max_eval_path_length = max_eval_path_length # used by OffPolicyVectorizedSampler self.env_spec = env_spec self.rollout_batch_size = rollout_batch_size self.replay_buffer = replay_buffer self.policy = policy self.exploration_policy = exploration_policy self.sampler_cls = OffPolicyVectorizedSampler self.init_opt()
[docs] def init_opt(self): """Build the loss function and init the optimizer.""" with tf.name_scope(self._name): # Create target policy (actor) and qf (critic) networks with tf.name_scope('inputs'): obs_dim = self.env_spec.observation_space.flat_dim y = tf.compat.v1.placeholder(tf.float32, shape=(None, 1), name='input_y') obs = tf.compat.v1.placeholder(tf.float32, shape=(None, obs_dim), name='input_observation') actions = tf.compat.v1.placeholder( tf.float32, shape=(None, self.env_spec.action_space.flat_dim), name='input_action') policy_network_outputs = self._target_policy.get_action_sym( obs, name='policy') target_qf_outputs = self._target_qf.get_qval_sym(obs, actions, name='qf') target_qf2_outputs = self._target_qf2.get_qval_sym(obs, actions, name='qf') self.target_policy_f_prob_online = tensor_utils.compile_function( inputs=[obs], outputs=policy_network_outputs) self.target_qf_f_prob_online = tensor_utils.compile_function( inputs=[obs, actions], outputs=target_qf_outputs) self.target_qf2_f_prob_online = tensor_utils.compile_function( inputs=[obs, actions], outputs=target_qf2_outputs) # Set up target init and update functions with tf.name_scope('setup_target'): policy_init_op, policy_update_op = tensor_utils.get_target_ops( self.policy.get_global_vars(), self._target_policy.get_global_vars(), self._tau) qf_init_ops, qf_update_ops = tensor_utils.get_target_ops( self.qf.get_global_vars(), self._target_qf.get_global_vars(), self._tau) qf2_init_ops, qf2_update_ops = tensor_utils.get_target_ops( self.qf2.get_global_vars(), self._target_qf2.get_global_vars(), self._tau) target_init_op = policy_init_op + qf_init_ops + qf2_init_ops target_update_op = (policy_update_op + qf_update_ops + qf2_update_ops) f_init_target = tensor_utils.compile_function( inputs=[], outputs=target_init_op) f_update_target = tensor_utils.compile_function( inputs=[], outputs=target_update_op) # Set up policy training function next_action = self.policy.get_action_sym(obs, name='policy_action') next_qval = self.qf.get_qval_sym(obs, next_action, name='policy_action_qval') with tf.name_scope('action_loss'): action_loss = -tf.reduce_mean(next_qval) with tf.name_scope('minimize_action_loss'): policy_optimizer = make_optimizer( self._policy_optimizer, learning_rate=self._policy_lr, name='PolicyOptimizer') policy_train_op = policy_optimizer.minimize( action_loss, var_list=self.policy.get_trainable_vars()) f_train_policy = tensor_utils.compile_function( inputs=[obs], outputs=[policy_train_op, action_loss]) # Set up qf training function qval = self.qf.get_qval_sym(obs, actions, name='q_value') q2val = self.qf2.get_qval_sym(obs, actions, name='q2_value') with tf.name_scope('qval1_loss'): qval1_loss = tf.reduce_mean(tf.math.squared_difference( y, qval)) with tf.name_scope('qval2_loss'): qval2_loss = tf.reduce_mean( tf.math.squared_difference(y, q2val)) with tf.name_scope('minimize_qf_loss'): qf_optimizer = make_optimizer(self._qf_optimizer, learning_rate=self._qf_lr, name='QFunctionOptimizer') qf_train_op = qf_optimizer.minimize( qval1_loss, var_list=self.qf.get_trainable_vars()) qf2_train_op = qf_optimizer.minimize( qval2_loss, var_list=self.qf2.get_trainable_vars()) f_train_qf = tensor_utils.compile_function( inputs=[y, obs, actions], outputs=[qf_train_op, qval1_loss, qval]) f_train_qf2 = tensor_utils.compile_function( inputs=[y, obs, actions], outputs=[qf2_train_op, qval2_loss, q2val]) self.f_train_policy = f_train_policy self.f_train_qf = f_train_qf self.f_init_target = f_init_target self.f_update_target = f_update_target self.f_train_qf2 = f_train_qf2
def __getstate__(self): """Object.__getstate__. Returns: dict: State dictionary. """ data = self.__dict__.copy() del data['target_policy_f_prob_online'] del data['target_qf_f_prob_online'] del data['target_qf2_f_prob_online'] del data['f_train_policy'] del data['f_train_qf'] del data['f_train_qf2'] del data['f_init_target'] del data['f_update_target'] return data def __setstate__(self, state): """Object.__setstate__. Args: state (dict): Current state. """ self.__dict__.update(state) self.init_opt()
[docs] def train(self, runner): """Obtain samplers and start actual training for each epoch. Args: runner (LocalRunner): LocalRunner is passed to give algorithm the access to runner.step_epochs(), which provides services such as snapshotting and sampler control. Returns: float: The average return in last epoch cycle. """ last_return = None runner.enable_logging = False for _ in runner.step_epochs(): for cycle in range(self._steps_per_epoch): runner.step_path = runner.obtain_samples(runner.step_itr) for path in runner.step_path: path['rewards'] *= self._reward_scale last_return = self.train_once(runner.step_itr, runner.step_path) if (cycle == 0 and self.replay_buffer.n_transitions_stored >= self._min_buffer_size): runner.enable_logging = True log_performance(runner.step_itr, obtain_evaluation_samples( self.policy, runner.get_env_copy()), discount=self._discount) runner.step_itr += 1 return last_return
[docs] def train_once(self, itr, paths): """Perform one step of policy optimization given one batch of samples. Args: itr (int): Iteration number. paths (list[dict]): A list of collected paths. Returns: np.float64: Average return. """ paths = samples_to_tensors(paths) epoch = itr / self._steps_per_epoch self._episode_rewards.extend([ path for path, complete in zip(paths['undiscounted_returns'], paths['complete']) if complete ]) self._success_history.extend([ path for path, complete in zip(paths['success_history'], paths['complete']) if complete ]) # Avoid calculating the mean of an empty list in cases where # all paths were non-terminal. last_average_return = np.NaN avg_success_rate = 0 if self._episode_rewards: last_average_return = np.mean(self._episode_rewards) if self._success_history: if (itr % self._steps_per_epoch == 0 and self.replay_buffer.n_transitions_stored >= self._min_buffer_size): avg_success_rate = np.mean(self._success_history) self.policy.log_diagnostics(paths) self._qf.log_diagnostics(paths) for _ in range(self._n_train_steps): if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): qf_loss, y_s, qval, policy_loss = self.optimize_policy(itr) self._episode_policy_losses.append(policy_loss) self._episode_qf_losses.append(qf_loss) self._epoch_ys.append(y_s) self._epoch_qs.append(qval) if itr % self._steps_per_epoch == 0: logger.log('Training finished') if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): tabular.record('Epoch', epoch) tabular.record('Policy/AveragePolicyLoss', np.mean(self._episode_policy_losses)) tabular.record('QFunction/AverageQFunctionLoss', np.mean(self._episode_qf_losses)) tabular.record('QFunction/AverageQ', np.mean(self._epoch_qs)) tabular.record('QFunction/MaxQ', np.max(self._epoch_qs)) tabular.record('QFunction/AverageAbsQ', np.mean(np.abs(self._epoch_qs))) tabular.record('QFunction/AverageY', np.mean(self._epoch_ys)) tabular.record('QFunction/MaxY', np.max(self._epoch_ys)) tabular.record('QFunction/AverageAbsY', np.mean(np.abs(self._epoch_ys))) tabular.record('AverageSuccessRate', avg_success_rate) if not self._smooth_return: self._episode_rewards = [] self._episode_policy_losses = [] self._episode_qf_losses = [] self._epoch_ys = [] self._epoch_qs = [] self._success_history.clear() return last_average_return
[docs] def optimize_policy(self, itr): """Perform algorithm optimizing. Args: itr(int): Iterations. Returns: action_loss(float): Loss of action predicted by the policy network. qval_loss(float): Loss of q value predicted by the q network. ys(float): y_s. qval(float): Q value predicted by the q network. """ transitions = self.replay_buffer.sample_transitions( self._buffer_batch_size) observations = transitions['observations'] rewards = transitions['rewards'] actions = transitions['actions'] next_observations = transitions['next_observations'] terminals = transitions['terminals'] next_inputs = next_observations inputs = observations target_actions = self.target_policy_f_prob_online(next_inputs) noise = np.random.normal(0.0, self._exploration_policy_sigma, target_actions.shape) noise = np.clip(noise, -self._exploration_policy_clip, self._exploration_policy_clip) target_actions += noise target_qvals = self.target_qf_f_prob_online(next_inputs, target_actions) target_q2vals = self.target_qf2_f_prob_online(next_inputs, target_actions) target_qvals = np.minimum(target_qvals, target_q2vals) ys = (rewards + (1.0 - terminals) * self._discount * target_qvals) _, qval_loss, qval = self.f_train_qf(ys, inputs, actions) _, q2val_loss, q2val = self.f_train_qf2(ys, inputs, actions) if qval_loss > q2val_loss: qval_loss = q2val_loss qval = q2val # update policy and target networks less frequently if self._action_loss is None or (itr % self._actor_update_period) == 0: _, self._action_loss = self.f_train_policy(inputs) self.f_update_target() return qval_loss, ys, qval, self._action_loss