Source code for garage.torch.algos.ddpg

"""This modules creates a DDPG model in PyTorch."""
from collections import deque
import copy

from dowel import logger, tabular
import numpy as np
import torch

from garage import _Default, make_optimizer
from garage import log_performance
from garage.np import obtain_evaluation_samples
from garage.np import samples_to_tensors
from garage.np.algos import RLAlgorithm
from garage.sampler import OffPolicyVectorizedSampler
from garage.torch import dict_np_to_torch, torch_to_np


[docs]class DDPG(RLAlgorithm): """A DDPG model implemented with PyTorch. DDPG, also known as Deep Deterministic Policy Gradient, uses actor-critic method to optimize the policy and Q-function prediction. It uses a supervised method to update the critic network and policy gradient to update the actor network. And there are exploration strategy, replay buffer and target networks involved to stabilize the training process. Args: env_spec (EnvSpec): Environment specification. policy (garage.torch.policies.Policy): Policy. qf (object): Q-value network. replay_buffer (garage.replay_buffer.ReplayBuffer): Replay buffer. steps_per_epoch (int): Number of train_once calls per epoch. n_train_steps (int): Training steps. max_path_length (int): Maximum path length. The episode will terminate when length of trajectory reaches max_path_length. max_eval_path_length (int or None): Maximum length of paths used for off-policy evaluation. If None, defaults to `max_path_length`. buffer_batch_size (int): Batch size of replay buffer. min_buffer_size (int): The minimum buffer size for replay buffer. rollout_batch_size (int): Roll out batch size. exploration_policy (garage.np.exploration_policies.ExplorationPolicy): # noqa: E501 Exploration strategy. target_update_tau (float): Interpolation parameter for doing the soft target update. discount(float): Discount factor for the cumulative return. policy_weight_decay (float): L2 weight decay factor for parameters of the policy network. qf_weight_decay (float): L2 weight decay factor for parameters of the q value network. policy_optimizer (Union[type, tuple[type, dict]]): Type of optimizer for training policy network. This can be an optimizer type such as `torch.optim.Adam` or a tuple of type and dictionary, where dictionary contains arguments to initialize the optimizer e.g. `(torch.optim.Adam, {'lr' : 1e-3})`. qf_optimizer (Union[type, tuple[type, dict]]): Type of optimizer for training Q-value network. This can be an optimizer type such as `torch.optim.Adam` or a tuple of type and dictionary, where dictionary contains arguments to initialize the optimizer e.g. `(torch.optim.Adam, {'lr' : 1e-3})`. policy_lr (float): Learning rate for policy network parameters. qf_lr (float): Learning rate for Q-value network parameters. clip_pos_returns (bool): Whether or not clip positive returns. clip_return (float): Clip return to be in [-clip_return, clip_return]. max_action (float): Maximum action magnitude. reward_scale (float): Reward scale. smooth_return (bool): Whether to smooth the return for logging. """ def __init__( self, env_spec, policy, qf, replay_buffer, *, # Everything after this is numbers. steps_per_epoch=20, n_train_steps=50, max_path_length=None, max_eval_path_length=None, buffer_batch_size=64, min_buffer_size=int(1e4), rollout_batch_size=1, exploration_policy=None, target_update_tau=0.01, discount=0.99, policy_weight_decay=0, qf_weight_decay=0, policy_optimizer=torch.optim.Adam, qf_optimizer=torch.optim.Adam, policy_lr=_Default(1e-4), qf_lr=_Default(1e-3), clip_pos_returns=False, clip_return=np.inf, max_action=None, reward_scale=1., smooth_return=True): action_bound = env_spec.action_space.high self._tau = target_update_tau self._policy_weight_decay = policy_weight_decay self._qf_weight_decay = qf_weight_decay self._clip_pos_returns = clip_pos_returns self._clip_return = clip_return self._max_action = action_bound if max_action is None else max_action self._steps_per_epoch = steps_per_epoch self._success_history = deque(maxlen=100) self._episode_rewards = [] self._episode_policy_losses = [] self._episode_qf_losses = [] self._epoch_ys = [] self._epoch_qs = [] self._policy = policy self._qf = qf self._n_train_steps = n_train_steps self._min_buffer_size = min_buffer_size self._qf = qf self._steps_per_epoch = steps_per_epoch self._n_train_steps = n_train_steps self._buffer_batch_size = buffer_batch_size self._discount = discount self._reward_scale = reward_scale self._smooth_return = smooth_return self.max_path_length = max_path_length self._max_eval_path_length = max_eval_path_length # used by OffPolicyVectorizedSampler self.env_spec = env_spec self.rollout_batch_size = rollout_batch_size self.replay_buffer = replay_buffer self.policy = policy self.exploration_policy = exploration_policy self._target_policy = copy.deepcopy(self.policy) self._target_qf = copy.deepcopy(self._qf) self._policy_optimizer = make_optimizer(policy_optimizer, module=self.policy, lr=policy_lr) self._qf_optimizer = make_optimizer(qf_optimizer, module=self._qf, lr=qf_lr) self.sampler_cls = OffPolicyVectorizedSampler
[docs] def train(self, runner): """Obtain samplers and start actual training for each epoch. Args: runner (LocalRunner): LocalRunner is passed to give algorithm the access to runner.step_epochs(), which provides services such as snapshotting and sampler control. Returns: float: The average return in last epoch cycle. """ last_return = None runner.enable_logging = False for _ in runner.step_epochs(): for cycle in range(self._steps_per_epoch): runner.step_path = runner.obtain_samples(runner.step_itr) for path in runner.step_path: path['rewards'] *= self._reward_scale last_return = self.train_once(runner.step_itr, runner.step_path) if (cycle == 0 and self.replay_buffer.n_transitions_stored >= self._min_buffer_size): runner.enable_logging = True log_performance(runner.step_itr, obtain_evaluation_samples( self.policy, runner.get_env_copy()), discount=self._discount) runner.step_itr += 1 return last_return
[docs] def train_once(self, itr, paths): """Perform one iteration of training. Args: itr (int): Iteration number. paths (list[dict]): A list of collected paths Returns: float: Average return. """ paths = samples_to_tensors(paths) epoch = itr / self._steps_per_epoch self._episode_rewards.extend([ path for path, complete in zip(paths['undiscounted_returns'], paths['complete']) if complete ]) self._success_history.extend([ path for path, complete in zip(paths['success_history'], paths['complete']) if complete ]) # Avoid calculating the mean of an empty list in cases where # all paths were non-terminal. last_average_return = np.NaN avg_success_rate = 0 if self._episode_rewards: last_average_return = np.mean(self._episode_rewards) if self._success_history: if (itr % self._steps_per_epoch == 0 and (self.replay_buffer.n_transitions_stored >= self._min_buffer_size)): avg_success_rate = np.mean(self._success_history) for _ in range(self._n_train_steps): if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): samples = self.replay_buffer.sample_transitions( self._buffer_batch_size) qf_loss, y, q, policy_loss = torch_to_np( self.optimize_policy(samples)) self._episode_policy_losses.append(policy_loss) self._episode_qf_losses.append(qf_loss) self._epoch_ys.append(y) self._epoch_qs.append(q) if itr % self._steps_per_epoch == 0: logger.log('Training finished') if (self.replay_buffer.n_transitions_stored >= self._min_buffer_size): tabular.record('Epoch', epoch) tabular.record('Policy/AveragePolicyLoss', np.mean(self._episode_policy_losses)) tabular.record('QFunction/AverageQFunctionLoss', np.mean(self._episode_qf_losses)) tabular.record('QFunction/AverageQ', np.mean(self._epoch_qs)) tabular.record('QFunction/MaxQ', np.max(self._epoch_qs)) tabular.record('QFunction/AverageAbsQ', np.mean(np.abs(self._epoch_qs))) tabular.record('QFunction/AverageY', np.mean(self._epoch_ys)) tabular.record('QFunction/MaxY', np.max(self._epoch_ys)) tabular.record('QFunction/AverageAbsY', np.mean(np.abs(self._epoch_ys))) tabular.record('AverageSuccessRate', avg_success_rate) if not self._smooth_return: self._episode_rewards = [] self._episode_policy_losses = [] self._episode_qf_losses = [] self._epoch_ys = [] self._epoch_qs = [] self._success_history.clear() return last_average_return
[docs] def optimize_policy(self, samples_data): """Perform algorithm optimizing. Args: samples_data (dict): Processed batch data. Returns: action_loss: Loss of action predicted by the policy network. qval_loss: Loss of Q-value predicted by the Q-network. ys: y_s. qval: Q-value predicted by the Q-network. """ transitions = dict_np_to_torch(samples_data) observations = transitions['observations'] rewards = transitions['rewards'].reshape(-1, 1) actions = transitions['actions'] next_observations = transitions['next_observations'] terminals = transitions['terminals'].reshape(-1, 1) next_inputs = next_observations inputs = observations with torch.no_grad(): next_actions = self._target_policy(next_inputs) target_qvals = self._target_qf(next_inputs, next_actions) clip_range = (-self._clip_return, 0. if self._clip_pos_returns else self._clip_return) y_target = rewards + (1.0 - terminals) * self._discount * target_qvals y_target = torch.clamp(y_target, clip_range[0], clip_range[1]) # optimize critic qval = self._qf(inputs, actions) qf_loss = torch.nn.MSELoss() qval_loss = qf_loss(qval, y_target) self._qf_optimizer.zero_grad() qval_loss.backward() self._qf_optimizer.step() # optimize actor actions = self.policy(inputs) action_loss = -1 * self._qf(inputs, actions).mean() self._policy_optimizer.zero_grad() action_loss.backward() self._policy_optimizer.step() # update target networks self.update_target() return (qval_loss.detach(), y_target, qval.detach(), action_loss.detach())
[docs] def update_target(self): """Update parameters in the target policy and Q-value network.""" for t_param, param in zip(self._target_qf.parameters(), self._qf.parameters()): t_param.data.copy_(t_param.data * (1.0 - self._tau) + param.data * self._tau) for t_param, param in zip(self._target_policy.parameters(), self.policy.parameters()): t_param.data.copy_(t_param.data * (1.0 - self._tau) + param.data * self._tau)