Model-Agnostic Meta-Learning (MAML)¶
Paper |
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks [1] |
Framework(s) |
![]() PyTorch¶ |
API Reference |
|
Code |
|
Examples |
maml_ppo_half_cheetah_dir, maml_trpo_half_cheetah_dir, maml_trpo_metaworld_ml1_push, maml_trpo_metaworld_ml10. maml_trpo_metaworld_ml45 |
MAML is a meta-learning algorithm that trains the parameters of a policy such that they generalize well to unseen tasks. In essence, this technique produces models that are good few shot learners and easy to fine-tune.
Default Parameters¶
meta_batch_size=40,
inner_lr=0.1,
outer_lr=1e-3,
num_grad_updates=1,
meta_evaluator=None,
evaluate_every_n_epochs=1
Examples¶
maml_ppo_half_cheetah_dir¶
maml_trpo_half_cheetah_dir¶
maml_trpo_metaworld_ml1_push¶
maml_trpo_metaworld_ml10¶
maml_trpo_metaworld_ml45¶
References¶
- 1
Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. 2017. arXiv:1703.03400.
This page was authored by Mishari Aliesa (@maliesa96).