garage.tf.policies.task_embedding_policy
¶
Policy class for Task Embedding envs.
- class TaskEmbeddingPolicy¶
Bases:
garage.tf.policies.policy.Policy
Base class for Task Embedding policies in TensorFlow.
This policy needs a task id in addition to observation to sample an action.
- property encoder¶
Encoder.
- property latent_space¶
Space of latent.
- Type
akro.Box
- property task_space¶
One-hot space of task id.
- Type
akro.Box
- property augmented_observation_space¶
Concatenated observation space and one-hot task id.
- Type
akro.Box
- property encoder_distribution¶
Encoder distribution.
- Type
tfp.Distribution.MultivariateNormalDiag
- property state_info_specs¶
State info specification.
- Returns
- keys and shapes for the information related to the
module’s state when taking an action.
- Return type
List[str]
- property state_info_keys¶
State info keys.
- Returns
- keys for the information related to the module’s state
when taking an input.
- Return type
List[str]
- property env_spec¶
Policy environment specification.
- Returns
Environment specification.
- Return type
- property observation_space¶
Observation space.
- Returns
The observation space of the environment.
- Return type
akro.Space
- property action_space¶
Action space.
- Returns
The action space of the environment.
- Return type
akro.Space
- get_latent(task_id)¶
Get embedded task id in latent space.
- Parameters
task_id (np.ndarray) – One-hot task id, with shape \((N, )\). N is the number of tasks.
- Returns
- An embedding sampled from embedding distribution, with
shape \((Z, )\). Z is the dimension of the latent embedding.
dict: Embedding distribution information.
- Return type
np.ndarray
- abstract get_action(observation)¶
Get action sampled from the policy.
- Parameters
observation (np.ndarray) – Augmented observation from the environment, with shape \((O+N, )\). O is the dimension of observation, N is the number of tasks.
- Returns
- Action sampled from the policy,
with shape \((A, )\). A is the dimension of action.
dict: Action distribution information.
- Return type
np.ndarray
- abstract get_actions(observations)¶
Get actions sampled from the policy.
- Parameters
observations (np.ndarray) – Augmented observation from the environment, with shape \((T, O+N)\). T is the number of environment steps, O is the dimension of observation, N is the number of tasks.
- Returns
- Actions sampled from the policy,
with shape \((T, A)\). T is the number of environment steps, A is the dimension of action.
dict: Action distribution information.
- Return type
np.ndarray
- abstract get_action_given_task(observation, task_id)¶
Sample an action given observation and task id.
- Parameters
observation (np.ndarray) – Observation from the environment, with shape \((O, )\). O is the dimension of the observation.
task_id (np.ndarray) – One-hot task id, with shape :math:`(N, ). N is the number of tasks.
- Returns
- Action sampled from the policy, with shape
\((A, )\). A is the dimension of action.
dict: Action distribution information.
- Return type
np.ndarray
- abstract get_actions_given_tasks(observations, task_ids)¶
Sample a batch of actions given observations and task ids.
- Parameters
observations (np.ndarray) – Observations from the environment, with shape \((T, O)\). T is the number of environment steps, O is the dimension of observation.
task_ids (np.ndarry) – One-hot task ids, with shape \((T, N)\). T is the number of environment steps, N is the number of tasks.
- Returns
- Actions sampled from the policy,
with shape \((T, A)\). T is the number of environment steps, A is the dimension of action.
dict: Action distribution information.
- Return type
np.ndarray
- abstract get_action_given_latent(observation, latent)¶
Sample an action given observation and latent.
- Parameters
observation (np.ndarray) – Observation from the environment, with shape \((O, )\). O is the dimension of observation.
latent (np.ndarray) – Latent, with shape \((Z, )\). Z is the dimension of latent embedding.
- Returns
- Action sampled from the policy,
with shape \((A, )\). A is the dimension of action.
dict: Action distribution information.
- Return type
np.ndarray
- abstract get_actions_given_latents(observations, latents)¶
Sample a batch of actions given observations and latents.
- Parameters
observations (np.ndarray) – Observations from the environment, with shape \((T, O)\). T is the number of environment steps, O is the dimension of observation.
latents (np.ndarray) – Latents, with shape \((T, Z)\). T is the number of environment steps, Z is the dimension of latent embedding.
- Returns
- Actions sampled from the policy,
with shape \((T, A)\). T is the number of environment steps, A is the dimension of action.
dict: Action distribution information.
- Return type
np.ndarray
- split_augmented_observation(collated)¶
Splits up observation into one-hot task and environment observation.
- Parameters
collated (np.ndarray) – Environment observation concatenated with task one-hot, with shape \((O+N, )\). O is the dimension of observation, N is the number of tasks.
- Returns
- Vanilla environment observation,
with shape \((O, )\). O is the dimension of observation.
- np.ndarray: Task one-hot, with shape \((N, )\). N is the number
of tasks.
- Return type
np.ndarray
- reset(do_resets=None)¶
Reset the policy.
This is effective only to recurrent policies.
do_resets is an array of boolean indicating which internal states to be reset. The length of do_resets should be equal to the length of inputs, i.e. batch size.
- Parameters
do_resets (numpy.ndarray) – Bool array indicating which states to be reset.